

NASA-DoD Combined Environments Testing Results

Presented

by

Cynthia Garcia

Sr. Multi-Disciplined Engr I

October 28, 2010

Raytheon

Customer Success Is Our Mission

Overview

- Combined Environments Testing
 - □ Early Life Failures
 - □ Low & High Number of Defects
 - □ 2P Weibull Plot Not Good Fit
 - CSP-100 CTF Higher Than Expected
 - □ ENIG Sample Size Too Small
- Results
- Statistical Analysis
- Conclusions
- Questions

Combined Environments Testing

- Combines Thermal Cycling and Vibration Testing
- Based on Modified Highly Accelerated Life Test (HALT)
- Benefits
 - □ Identify Design and Process Problems
 - □ Time Frame is Shorter and Faster
 - □ Sample Size can be Smaller

Combined Environments Testing

- Possible Problems
 - □ Stressed Beyond Typical Use Environments
 - Thermal Extremes
 - Thermal Rate of Change
 - Vibration
 - Not a True Life Test
- Compare Lead-Free Solder Performance Against Baseline Tin-Lead Eutectic Solder

Combined Environments Chamber

- Thermal
 - □ Thermal Capability Ranges from -100 to 200°C
 - □ Ramp Rates of Up to 60°C per Minute
- Vibration
 - □ Maximum Levels of ≥ 60 g_{rms}
- Thermal and Vibrations can be Applied Separately or Combined

Combined Environments Test Parameters

- Thermal
 - □ -55 to 125°CTemperature Cycles
 - □ 20°C per Minute Ramp
 - □ 15 Minute Soak
- Vibration
 - □ 10 g_{rms}, Initial
 - □ Increased by 5 g_{rms}
 Every 50 cycles
 - Maintained During Cycles
 - □ 55 g_{rms}, Maximum

Combined Environments Test

Parameters

Monitored with accelerometer
Monitored with thermocouple

- Test Vehicles
 - □ 16 Manufactured
 - □ 11 Rework
- Monitored with Event Detector
- Vibration Monitored on Mfg Test Vehicles, Randomly Placed
- Randomized Test Set-up

Manufactured Test Set-up				
Bottom Layer				
23	69	71		
118	22	120		
73	20	24		

Rework Test Set-up				
Bottom Layer				
181	140	142		
158	139	183		
163	143	97		

Top Layer		
116	72	
21	70	
119	117	

Top Layer		
180	N/A	
182	N/A	
141	N/A	

Early Life Failures

- Failures Less Than 10 Cycles
 - □ Treated as Outliers
- Two Weibull plots
 - □ One Showing Outliers
 - □ Second Plot Without
- Example
 - ☐ Mfg SN100C/SnPb BGA-225

Early Life Failures

- Most Outliers Occurred on Reworked Test Vehicles
- Examples:
 - □ Rwk Flux Only/SAC405 BGA-225 (Rwk)
 - □ Rwk SnPb/Sn TSOP-50 (Rwk)
 - □ Rwk ENIG SnPb/SAC405 BGA-225 (Rwk)
 - □ Rwk SnPb/SAC405 BGA-225 Batch B (Rwk)
 - □ Rwk SAC305/SAC305 TQFP-144

Rework Early Life Failures

- Rework Processing Difficult
 - □ Unplanned Rework
 - □ Some Components Reworked More Than Once
- BGA Rework Processing Difficult

	Batch A - Lead-Free Rework							
Test Vehicle	Component Location	Component Type	Original Component Finish	Reflow Solder Alloy	New Component Finish	Rework Solder	Scheduled for Rework	Total # of Reworks
SN180	U04	BGA-225	SnPb	SAC305			No	1
SN180	U05	BGA-225	SnPb	SAC305			No	1
SN180	U43	BGA-225	SAC405	SAC305	SAC405	SnPb	Yes	2
SN181	U18	BGA-225	SAC405	SAC305	SAC405	SnPb	Yes	2
SN181	U56	BGA-225	SAC405	SAC305	SAC405	Flux Only	Yes	2

Rwk Flux Only/SAC405 BGA-225

Key = Solder alloy/Component finish

- Shown Using Same Scale
- 2P Weibull Fit Affected by Outliers

Low Number of Defects

- Test Vehicles with 20 or Fewer Failures
 - □ Run 1 (Mfg) TV SN 23, 69 and 116 and ENIG TV SN 97 (*Tested in Run 2*)
 - □ Run 2 (Rwk) TV SN 142 and 183
- Run 1 Failed A Higher Percentage of Components Than Run 2
- Possible Causes for Low Fails
 - ☐ Mechanical Issues with Chamber
 - Location of TVs in Chamber

Causes for Low Failures Between Run 1 and Run 2

- Mechanical Issues with Chamber
 - □ Run 1 Manufactured, Qty 15 TVs
 - Chamber Shut Down for Maintenance and Repair
 - Learning Curve Controlling Vibe levels
 - □ Run 2 Rework, *Qty 12 TVs*
 - Weight Distribution Not the Same
 - Air Flow Not the Same
- Location of TVs in Chamber
 - □ Three Hammers Replaced Between Runs

High Number of Failures

■ TV SN 119 — Located Next to Heat Source

Location of TVs in Chamber

Run 1

Manufactured Test Set-up				
Bottom Layer				
X	X	71		
118	22	120		
73	20	24		

Top Layer		
72		
21	70	
119	117	

Low Fails - High Fails

Run 2

Rework Test Set-up					
Вс	Bottom Layer				
181	140	X			
158	139	X			
163	143	X			

Top Layer		
180	N/A	
182	N/A	
141	N/A	

Monitored with accelerometer Monitored with thermocouple

- Hammer replaced

Discussion of Effect on TVs

- Test Chamber
- Prior to Maintenance
 - Vibe Table Running Inefficient in Three Locations
 - Hammers Under TV SN 23, 69, 116 Running Inefficiently
 - Less Stress to Those Located Above Area

Discussion of Effect on TVs

- Maintenance Performed
 - □ Three Hammers Replaced Between Run 1 and Run 2
 - ☐ Fine Tuning Performed Prior to Run 2
- As a Result
 - □ Hammers Distribute Vibe Efficiently in Run 2
 - Less Stress to Boards
 - □ Fewer Component Failures to Rework TVs

2P Weibull Not Good Fit

- 2P Weibull Plots Not Best Fit for Some Data
 - \square Examples of ρ < 0.95:

- Mfg TSOP-50 SnPb/SnPb
 ρ = 0.8728
 Stair Step ~500 550 cycles
- Mfg TSOP-50 SAC305/SnPb $\rho = 0.8796$ Stair Step ~500 550 cycles

What Happened after 500 Cycles?

- Manufactured TVs at 500 Cycles
 - □ Vibration Levels were 55 g_{rms}
 - Vibe Table Strained to Maintain Specified level
- Attribute Stair Step to Noise
 - ☐ Mechanical Issues
 - □ Chamber Maximum Vibe is ~60 g_{rms}
 - □ Properties of Solder Changed
 - □ Indication of a New Failure Mode
- Previous CET HALT and Thermal Cycle Testing Had Similar Phenomena

CSP-100 CTF Higher Than Expected

- Affected by
 - Incorrect ComponentConfiguration in Drafting
 - □ Both Sides of Continuity Loop <u>Must</u> Break to Record an "Event"
- 2P Weibull Plots are <u>not</u> <u>comparable</u> to other Components
- Data Analysis Factor Must be Calculated for Reliability Comparison

ENIG Sample Size Too Small

- Two ENIG TVs Tested in Run 2 (Rwk)
 - ☐ Mfg TV SN 97
 - 14 Total Components Failed
 - □ 5 of 14 were BGA-225 SnPb/SAC305
 - □ Rwk TV SN 158
 - 31 Total Components Failed
 - □ 10 of 31 were CLCC-20 SAC305/SnPb (Not Reworked)
- ENIG Data Not Included in Variance Component Analysis

Manufactured Test Vehicle

Summary of Manufactured Results

SAC305 Failures equivalent to SnPb

Overall Manufactured PDIP Results

SnPb had Zero Failures

- BGA-225 SAC405/SAC305 vs SnPb/SnPb
 - □ Probability of Tin-Lead Lasting Longer Than SAC405/SAC305 is 54% Not Statistically Significant

- BGA-225 SN100C/SAC405 vs SnPb/SnPb
 - □ Probability of Tin-Lead Lasting Longer Than SN100C/SAC405 is 62% - Significant

- CLCC-20 SnPb/SAC305 vs. SnPb/SnPb
 - □ Probability of Tin-Lead Lasting Longer Than SnPb/SAC305 is 66%

■ TSOP-50 SnPb/SnBi vs. SnPb/SnPb

□ Data Point has Influenced Slope of Probability Line

Result of Rwk TV SN 181 (Batch A)

- Multiple Early Life Failures, Qty 3 BGA-225 Rwk with Flux Only/SAC405
 - U41 Not Reworked Rework Induced Failure?

Summary of Rework Results

- High Number of Early Life Failures
- Did Not Reach 55% Component Failures after 650 Cycles
- Rework Impacted Adjacent Components
- Maintenance of Test Chamber Had an Effect On

Results

- □ Hammers being replaced
- □ Less Severe Testing in Run 2 (Rwk)

Statistical Analysis

Charts of Variance Component Analysis

Manufacturing Data

Comparison of 2005 JCAA/ JG-PP Project and 2009 NASA-DoD Project

For Tin-Lead Solder and Tin-Copper on Mfg Less ENIG

For Tin-Silver-Copper 305 Solder on Mfg Less ENIG

Conclusions

- Component Type Has Greatest Effect on Reliability Performance
 - □ Plated-through-Hole More Reliable Than Surface Mount Components
- Solder Alloy Had Secondary Effect
 - □ Tin-Lead Finished Components Soldered With Tin-Lead Solder Paste More Reliable
- CSP CTF Higher than Expected
 - □ Tin-Lead Components Soldered With Tin-Silver-Copper 305 Solder Paste Performed Best

M

Conclusions

- Surface Finish ENIG vs Immersion Ag
 - NOTE: Sample Size was Two Boards
 - One Exception, Performance of Tin-Lead CLCC-20 Components Soldered with Tin-Silver-Copper 305 Solder Paste on ENIG Surface
- Immersion Silver Surface Finish of Manufactured Test Vehicles Appear to Enhance Reliability of Solder Joints
- In General, Rework Components are Less Reliable

Conclusions

Test Vehicle 180

Pb-Free REWORK Ag-SAC305-SnCu

- Failure Analysis In Progress
 - □ Provided by COM DEV®, Nihon Superior and Lockheed Martin Laboratories

Questions

